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Abstract— Since the discovery of Turbo Codes, iterative decoding
has gained enormous momentum. The idea of repeatedly passing
information between components of a receiver or decoder to in-
crease the overall system performance has attracted much research
effort. In this work, we present an iterative soft-decision decoding
architecture for Reed-Solomon (RS) codes on a partial-response (PR)
channel. The architecture incorporates a symbol-based a-posteriori
probability (APP) detector for the channel, and an enhanced soft-
decision RS decoder based upon the recently introduced Koetter-
Vardy (KV) algorithm. From the list of candidate RS codewords
generated by the KV decoder, we calculate output symbol reliabilities
that can be fed back to the APP detector as extrinsic information
to be used in a subsequent decoding iteration. Through simulations,
we show the efficacy of this approach, especially when the initial KV
list size is large. We will also propose ways to modify the decoding
scheme in order to beneficially increase the size of the candidate
codeword list and thereby improve the overall system performance.

I. INTRODUCTION

The discovery of Turbo codes by Berrou, Glavieux, and Thiti-
majshima [1] in 1993 has generated much interest in iterative
decoding. Turbo decoding consists of two Soft-Input Soft-Output
(SISO) decoders passing information between one another to iter-
atively refine the overall decoding decision. We modify the one-
pass soft-decision RS decoding scheme for PR channels, shown
in Figure 1, to include iterations. Through repeated decoding, we
aim to improve the accuracy of the a-priori probability input to
the symbol-based APP detector.
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Fig. 1. The conventional or one-pass Reed-Solomon (RS) decoding architecture.
The dashed line marks the proposed modification to run iterative decoding.

We are motivated by Pyndiah’s approach [2] that generates
the log likelihood ratio (LLR) from a list of codewords for
each symbol position. Pyndiah’s LLR description is actually the
log ratio of two a-posteriori probabilities (APPs), therefore, a
more appropriate term for Pyndiah’s LLR is the log a-posteriori
probability ratio (LAPPR) [3]. We use the extrinsic portion of the
LAPPR to adjust the a-priori probabilities in the symbol-based
BCJR algorithm [4] for re-decoding. The recalculated symbol
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reliabilities will allow the soft-decision RS decoder to refine the
candidate codeword list and improve the decoding performance.
In Section Il we discuss Pyndiah’s iterative turbo decoding of
product codes. In Section Il we review the conventional one-
pass soft-decision RS decoding architecture for PR channels. We
then describe how to modify the conventional architecture and
extend Pyndiah’s LAPPR calculation to allow iterative decoding.
In Section IV we provide the details of the LAPPR calculation and
discuss the need to weight the feedback extrinsic information. In
Section V we present simulation results that confirm the efficacy
of the iterative soft-decision RS decoding scheme. In Section VI
we discuss methods to further improve the iterative RS decoding
performance. In Section VII we conclude with some remarks.

Il. ITERATIVE TURBO DECODING OF PRODUCT CODES

The product code, shown in Figure 2, consists of a (n1, k1)
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Fig. 2. Construction of a product code C1 x Ca2. The code parameters are n, the
length, and, k, the dimension.

column code and a (n2, k2) row code. Pyndiah in [2] and [5]
considers the transmission of a binary product code over the
Gaussian channel. At the receiver end, each component code is
decoded using the Chase algorithm [6] and a list of candidate
codewords is generated for each decoding attempt. Let ¢ =
(c1,---,¢4, -+ ,cn) be the transmitted row (n = nsy) or column
(n = nq) codeword, y = (y1, - ,y;, - ,Yyn) be the codeword
plus additive white Gaussian noise (AWGN) with variance o2,
and d = (dy,---,d;,---dy) be the decision vector. The log a-
posteriori probability ratio (LAPPR) of the decision d; is defined

by
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The numerator can be expanded as
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where Sjl is the set of codewords in the Chase decoded list
such that ¢; = +1. The denominator can be expanded over the
codewords in the similarly defined set Sj‘l. Using Bayes’ rule and
assuming equally likely codewords we can rewrite the LAPPR as

Yeesrpiylel
A(dj) =1In (Zcesjl Ty g}> ®)

p{ylct= (ﬁ) exp (—‘gz_af‘ ) 4)

Pyndiah showed [2] that for high SNR, the LAPPR of (3) can
be approximated as

A (dj) = % (yj + wj) ®)

and w; is the extrinsic information for the symbol position j.
To obtain w;, we can calculate the LAPPR from the Chase
output using (3) and subtract the channel value from the weighted
LAPPR, i.e.

where

0.2
wj & oA (dj) —y; (6)

We can calculate the extrinsic information for each entry of
the product code matrix and use this information to modify the
channel value for re-decoding. Let [W (m)] be the calculated
extrinsic information of the m*" iteration and [Y] be the received
channel matrix (see Figure 2). Then the channel value for the m*"
iteration is given by

[Y (m)] = [Y] + a(m) [W (m)] (")

and «(m) is a weighting factor to reduce the effects of the
feedback information [W (m)], especially in the early iterations
when the bit error rate is high. Pyndiah’s turbo product decoder
is illustrated in Figure 3.
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Fig. 3. Pyndiah’s iterative turbo decoding of product codes.

I1l. MODIFYING SOFT-DECISION RS DECODING ON PR
CHANNELS TO INCLUDE ITERATIONS

We consider an (n,k,d) RS code over GF (q), where d is
the minimum distance, ¢ = 2!, and there are [ bits per field
symbol. The one-pass soft-decision RS decoding on PR channels
is depicted in Figure 1. The system consists of a symbol-based
BCJR which calculates the symbol-wise reliabilities for each -
bit symbol [4] and a Koetter-Vardy decoder [7] which takes as
input symbol-wise reliabilities and outputs a list of candidate
codewords. We would like to modify the configuration in Figure
1 and incorporate symbol-based LAPPR calculation in order to
apply iterative decoding. The idea, illustrated in Figure 4, is to
include an LAPPR computation block that takes as input the KV
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Fig. 4. Modifying the one-pass soft-decision RS decoding architecture for PR

channels to implement iterative decoding.

codeword list and generates the LAPPR for each symbol position.
We can then extract the extrinsic information for each symbol and
use the extrinsic information to adjust the a-priori probabilities
input to the symbol-based BCJR algorithm. Since the first pass of
the symbol-based BCJR uses equal a-priori probability for each
symbol, the re-adjusted prior probabilities will “pin” each symbol
path in the PR trellis with a corresponding likelihood value
(see Figure 5) much like the state pinning technique introduced
by Collins [8]. An interleaver is added to enhance the symbol
pinning effect, i.e., if a correct codeword is found by the KV
algorithm and its symbols are pinned by the feedback procedure,
the interleaver will distribute the correct symbols in the PR trellis
to break up burst error patterns. The KV decoder and the symbol-
based BCJR work together symbiotically to improve the overall
decoding performance.
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Fig. 5. Pinning the symbol paths in the PR trellis with likelihood values and
removing those paths that cannot occur.

IV. ITERATIVE SOFT-DECISION RS DECODING ON PR
CHANNELS

The iterative soft-decision RS decoding architecture for PR
channels is shown in Figure 6. We include a block interleaver after
the RS encoder. The codewords are written row-wise into and
read column-wise out of the interleaver. The permuted symbols
are then PR encoded and transmitted over the AWGN channel.
To decode the received channel values, we apply the symbol-
based BCJR algorithm to generate the symbol reliabilities and
run the KV algorithm to produce a candidate codeword list. We
calculate the LAPPR for each symbol position from the codeword
list, extract the extrinsic information, weight and feedback the
permuted information to adjust the a-priori probabilities input
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to the symbol-based BCJR algorithm. We continue the iterations
until the desired number has been reached.
A. Generating the log a-posteriori probability ratio (LAPPR)
from a list of codewords

For an (n, k) RS code, the symbol-based BCJR will output a
symbol reliability matrix of the following form for each channel
vector :

71,1 71,2 T1,n—1 T1,n
72,1 72,2 T2,n
H = . '.. . (8)
Tg—1,1 Tg—1,n
Tg,1 Tq,n

where each row index represents a field element «; € GF (¢) and
each column index represents a symbol position in the codeword.
Each entry of II is defined as

i :Pr(cj =y |g), 1=1,2,---,¢, and, j=1,2,---,n

©)
For each KV codeword list {c} and its corresponding reliability
II, we want to generate another size ¢ x n matrix, II*APPR whose

entries are
arer _ [ 2ees; Prie T
Sees: Pricl T}

where Sj— = {c € K-V outputlist : ¢; = ;} is the set of code-
words in the KV list such that the j* symbol position is «; and
5‘; = {c € K-V outputlist : ¢; # «;} is the set of codewords in
the KV list such that the j** symbol position is not «;. We can
express the conditional probability in (10) as

T,

(10)
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Substituting (11) into (10), we have
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where w; ; is the extrinsic information to be used to adjust the
a-priori probability input to the symbol-based BCJR algorithm.

B. The size of the KV decoded list versus the code rate.

The size of the KV decoded list is a function of the code rate.
The accuracy of the LAPPR depends on the list size. The larger
the codeword list, the better the LAPPR quality. The performance
of Guruswami and Sudan’s list-decoding (upon which the KV
algorithm is based) versus the rate of the RS code is plotted in [9,
Figure 1]. We see that the size of the list is dependent on the RS
code rate because the higher the rate, the smaller the error radius,
and the decoded list will contain fewer codewords. Moreover,
for high rate codes, the list-decoding capability converges to
that of classical (half the minimum distance) decoding and list-
decoding will most likely output one or zero codewords. If the list
contains only an incorrect codeword, the feedback information
may decrease the performance of the next iteration. For these
reasons, the feedback information should be weighted before
being used to adjust the a-priori probabilities.

C. Weighting the feedback extrinsic information

The weighting factor 0 < o (m) < 1 for the m!" iteration
is optimized through simulations and may be different for each
iteration. The idea is to have a low « (m) in the initial iterations
when the error rate is high and increase its magnitude as the
quality of the feedback information improves from trial-to-trial.
For a specific simulation run, the Word Error Rate (WER) may
fluctuate. This is especially true for high rate codes. On average,
however, iterations will improve the overall performance.

D. Seps to iterative soft-decision RS decoding

Initialization Step: Let m = 0 be the iteration number
and set the a-priori probability of each symbol to be equal,
i.e. let the a-priori probability matrix be TI*~7%" (;m) and set
m T (0) =1/gfori=1,2,--- ,gand j =1,2,--- ,n.

Iteration Steps:

1) Apply the symbol-based BCJR algorithm to the channel
values along with TT¢=P"éri (1) to calculate the reliability
matrix II (m).

2) Apply the Koetter-Vardy soft-decision RS decoding using
input IT (m).

3) Apply Pyndiah’s method to the KV list to generate the ¢ xn
matrix TI-APPR (m).

4) Calculate the extrinsic information by: WS¢ (1) —
EAPPR (1) — In (IT (m)).

5) Adjust the a-priori probability for the next pass of the
symbol-based BCJR algorithm by: IT¢=P7i7é (;m 4 1) =
[[e—priori (m) +a (m) . Weﬂrinsic (m)

6) Increment m by one and repeat.

V. SIMULATION RESULTS

The Guruswami-Sudan (GS) list-decoding involves finding a
bi-variate polynomial that interpolates a subset of the points in
a length n received word [9], [10]. The polynomial will pass
through each fitted point with a multiplicity m. Obtaining the
coefficients of the interpolating polynomial requires solving a
system of linear equations. The number of equations in the
system, also referred to as the cost, is given by

C=n(m(m+1)/2). (13)



[ Tterations\SNR | 0dB | 1dB | 2dB | 3dB [ 4dB |
0 0.5240 | 0.2790 | 0.0830 | 0.0132 | 0.0007
1 0.4440 | 0.2070 | 0.0410 | 0.0022 0
2 0.3900 | 0.1650 | 0.0310 | 0.0013 0
3 0.3680 | 0.1440 | 0.0260 | 0.0012 0
4 0.3470 | 0.1340 | 0.0220 | 0.0011 0
5 0.3400 | 0.1270 | 0.0220 | 0.0011 0
TABLE |

WER, SNR, AND ITERATION COUNT OF A (15,7,9) RS CODE OVER THE
EPR4 CHANNEL AND AVERAGED OVER 10,000 CODEWORDS.

Iterative soft-decision RS(15,7,9) decoding over the EPR4 channel
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Fig. 7. WER vs SNR plot of a (15,7,9) RS code over the EPR4 channel and
averaged over 10,000 codewords

Therefore, the complexity of the GS list-decoding can be high,
especially for long codewords and large multiplicities. Because
the KV algorithm is based on the GS interpolation technique, KV
decoding can also have a high computational cost . To lower the
complexity of the GS and the KV algorithms, Gross and others
have proposed a re-encoding technique [11] that decreases the
number of equations to be solved from C' to
C'=mn-k)(m(m+1)/2)=(1-k/n)C. (14)
The saving in the cost increases as a function of the code rate
To reduce simulation time, we apply soft-decision iterative
decoding to Reed-Solomon (RS) codes defined over GF (16). We
would expect the decoding behavior to extend to RS codes defined
over higher fields. We use the EPR4 channel with transfer function
h(D) = (1 — D) (1 + D) as the inner code. The first simulation
uses a (15,7,9) RS code and consists of decoding 10 trials of
1000 codewords each. The result is, therefore, averaged over
10,000 codewords. The extrinsic information weighting factors
for the iterations are «(m) = [0.01,0.01,0.01,0.02,0.1]. We
increase the weights slowly as the LAPPR becomes more accurate
with iterations. The Word Error Rate (WER) versus the channel
SNR is given in Table | and plotted in Figure 7. We see that at
a WER of 1 x 1072 there is a 0.5 dB gain after 1 iteration and
about 0.75 dB gain after 4.
The second simulation uses a (15, 9, 7) RS code and consists of,
again, averaging 10 trials of 1000 codewords. We use a different

[ Tterations\SNR | 3dB | 4dB [ 5dB |
0 0.1140 | 0.0171 | 0.0013
1 0.0578 | 0.0039 | 0.0001
2 0.0537 | 0.0035 | 0.0001
3 0.0535 | 0.0035 | 0.0001
4 0.0534 | 0.0035 | 0.0001
5 0.0534 | 0.0035 | 0.0001
TABLE 11

WER, SNR, AND ITERATION COUNT OF A (15,9,7) RS CODE OVER THE
EPR4 CHANNEL AND AVERAGED OVER 10,000 CODEWORDS.

Iterative soft-decision RS(15,9,7) decoding over the EPR4 channel
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Fig. 8. WER vs SNR plot of a (15,9, 7) RS code over the EPR4 channel and
averaged over 10,000 codewords.

weighting vector o (m) = [0.05,0.06,0.07,0.1,0.2]. The WER
versus SNR is given in Table Il and plotted in Figure 8. After
1 iteration there is a SNR gain of 0.6 dB at WER of 1 x 1073,
Applying simply one iteration of soft-decision RS decoding can
provide a noticeable performance improvement.

V1. METHODS TO IMPROVE THE PERFORMANCE OF
ITERATIVE SOFT-DECISION RS DECODING

A. Exhaustive list-generation

Because the list-size can be small for high-rate codes, we
consider an exhaustive approach to generating a larger codeword
list that would lead to a more accurate LAPPR calculation. The
method involves pinning each entry ; ; of the reliability matrix I1
to 1 and applying the KV algorithm to obtain a list of candidate
codewords that contain the i*" symbol at the j** position. For
example, if we want to generate a list of candidate codewords
that have the symbol «s in the second position, we can set the
(2,2) entry of the reliability matrix IT to 1 and zero out the
remaining elements in column 2. We would, therefore, input the
following reliability matrix to the KV algorithm:

m,1 0 Tin—1 Tin
may 1 Tn
= (15)
Tg-11 0 T Tg—1,n
Tq,1 0 Tq,n



No exhaustive Chase-type
v=v list-generation list-generation
0—1 -0.719 dB -2.578 dB
0—2 -1.283 dB -3.316 dB
0—3 -1.535 dB -3.698 dB
0—4 -1.790 dB -3.935 dB
0—5 -1.879 dB -4.232 dB

TABLE Il

THE WERR COMPARISON OF “CHASE” PINNING THE 7 LEAST RELIABLE
COLUMNSOF A (15,7,9) RS CODE ON THE EPR4 CHANNEL AT 0 DB SNR.

We repeat the process for all ¢ x n entries and take the union of
the lists generated by each KV decoding to increase the overall
candidate list size. The complexity is, however, high.

To reduce the computation requirement, we can use a “Chase”
variation [6] in which we only pin the least reliable s columns,
s < n. Reliability can be determined by taking the difference
between the maximum entry and the minimum entry of a column.
To decide which columns to pin, we first calculate

ﬂ__A — pmax min

7 1,7 %, (16)
where 77* is the largest entry and wg’j" is the smallest entry of
column j. Then we sort the wf's and only pin the s columns
that have the smallest s values. A column with a large wf
can be interpreted as reliable because the KV Algorithm A [7]
will concentrate its multiplicity allocation in only a few entries
in that column, whereas, a column with a small ij can be
regarded as unreliable because the proximity of the values of the
column entries will cause Algorithm A to spread the multiplicities
to many entries in that column. Since the total number of
multiplicities to be used is fixed, KV decoding is more certain
to find a list of candidate codewords when the multiplicities are
concentrated in a few locations as opposed to being spread out
across the reliability matrix II. Using the “Chase” variation, we
only apply ¢ x s instances of KV decoding instead of ¢ x n. Let
us define the Word Error Rate Ratio (WERR) as

WER,

WERR (u,v) =10 - log,, (WERU> ;
which indicates the improvement of WER from iteration u to
iteration v. To illustrate the performance and complexity trade-
off of increasing the list size, we plot the WERR of a (15,7,9)
RS code on the EPR4 channel at a SNR of 0 dB in Table III.
In this example, we run the KV decoding algorithm ¢ x s =
16 x 7 = 112 instead of ¢ x n = 16 x 15 = 240 times for the
exhaustive approach. The complexity and performance trade-off
can be managed by adjusting the number of columns, s, whose
entries are pinned and to which we apply the KV decoding.

— T

(17)

B. Interleaving codes of different rates

We can also improve the performance of iterative decoding by
periodically inserting a codeword from a lower rate RS code in the
transmission. Soft-decision RS decoding of the lower rate code
will lead to the correct transmitted symbols with high probability
and these symbols can pin the trellis to aid the decoding of higher
rate code symbols. As an example, for every three (15,7) RS
codewords, we can insert a (15,6) RS codeword to improve the
overall system performance at a small rate penalty, shown in Table
V.

No interleaving, Interleaving,
v rate=0.467 rate=0.45
0—1 -0.719 dB -0.887 dB
0—2 -1.283 dB -1.665 dB
0—3 -1.535 dB -2.002 dB
0—4 -1.790 dB -2.182 dB
0—5 -1.879 dB -2.223 dB

TABLE IV

THE WERR COMPARISON OF INTERLEAVING ONE (15, 6,10) RS CODEWORD
FOR EVERY THREE (15, 7,9) RS CODEWORDS (EPR4 AT 0DB SNR.)

VII. CONCLUSION

We have presented an approach for applying iterations to
soft-decision RS decoding. Our decoding architecture consists
of a symbol-based BCJR block, a soft-decision list-decoder, an
interleaver, and a LAPPR (log a-posteriori probability ratio) gen-
eration block. The symbol-based BCJR calculates symbol-wise
reliabilities using the Partial Response (PR) trellis of the channel.
The soft-decision list-decoder, in this case the Koetter-Vardy
algorithm, takes the symbol reliabilities as input and generates
a list of candidate codewords. The interleaver removes correlated
error patterns and the LAPPR generation block calculates the
extrinsic information that can be used to adjust the a-priori
symbol probability provided to the symbol-based BCJR in re-
decoding. The channel decoder (symbol-based BCJR) and the
soft-decision list-decoder (the KV algorithm) iteratively exchange
soft information with each other to improve the overall decoding
performance. Simulation results indicate that a noticeable per-
formance gain can be obtained after the first iteration. Methods
to further improve the iterative soft-decision RS decoding per-
formance such as exhaustive list-generation and interleaving of
lower rate RS codewords were also discussed.
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